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1. INTRODUCTION

Thin film solar cells constitute one of the future technological
solutions for sustainable energy supply. A particularly promising
route is offered by solar cells made from organic semiconductors
or inorganic semiconducting nanoparticles.1�4 In recent years,
hybrid solar cells based on an organic semiconductor in con-
junction with an inorganic nanoscale material are considered as
an alternative to purely organic solar cells, as they allow achieving
additional functionality by combining the advantages of the two
materials.5�9 In comparison to polymers, inorganic semiconduc-
tors offer a broader spectral range of absorption, particularly in
the NIR spectral range, a higher charge carrier mobility, and a
better thermal and morphological stability. At the same time,
their application in the form of nanoparticles enables the
possibility of band gap tuning for sufficiently small nanoparticle
diameters and the technological advantages of purely organic solar
cells, such as low-cost solution processing, roll-to-roll assembly,
or processing onto flexible substrates, are maintained. In the
literature, various composites based on Si, ZnO, TiO2, CdSe, and
a few other nanomaterials are currently of scientific interest.6�15

However, in hybrid and organic solar cells, a detailed funda-
mental understanding of the processes of light absorption,

formation of free polarons, and the subsequent transport of
these charges to the electrodes, which are central to their
operation, is lacking. In purely organic solar cell devices, these
photophysical processes have been shown to depend strongly on
the morphology of the heterojunction16 so that the device
efficiency can be improved significantly by the processing con-
ditions of the film.17�19 The widely used and highly attractive
polymer poly(3-hexylthiophene) (P3HT) can form two distinct
morphological phases associated with different chain conforma-
tions. If the P3HT chain adopts a random coil conformation, the
resulting film is amorphous. The associated absorption spectrum
is unstructured with a maximum centered around 450 nm (about
2.8 eV). This disordered structure prevails for regiorandom P3HT
(RRa-P3HT). In regioregular P3HT (RR-P3HT), the polymer
chains can planarize and assemble to form weakly coupled
H-aggregates,20,21 which arrange in closely (a few angstroms)
packed two-dimensional lamellar structures via π-stacking.22�25

Their spectroscopic signature is a well-structured absorption spec-
trum with a 0�0 vibronic peak around 600 nm (about 2.0 eV).21
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Such aggregates are partially formedwhenRR-P3HT is embedded
in a poor solvent or in a film after spin-coating from solution. RR-
P3HT is a semicrystalline polymer whose degree of crystallization
can be controlled by processing conditions. While it became clear
that the charge carrier mobility is enhanced in aggregated P3HT
chains,26,27 studies on the role of the aggregated or coiled con-
formation in the process of charge carrier generation and separation
in organic devices have been emerging only recently.16

For the design and operation of a solar cell, it is therefore of
crucial importance to understand the influence of morphology
on each of the individual photophysical steps. In organic
semiconductors, there is widespread agreement about the photo-
conversion process. The elementary step is light absorption to
generate excited states of a donor, followed by diffusion of the
excitation to the internal interface formed by a donor adjacent to
an acceptor and the decisive electron transfer from the excited
donor to the acceptor forming a Coulombically bound electron�
hole pair. Ideally, this is followed by their dissociation into free
charges that move away from the interface, preferentially not
suffering bimolecular recombination before being collected at the
respective electrodes. Moreover, there is agreement that in purely
organic blends the process of charge carrier generation takes
place on an ultrafast time scale in the range of 100 fs.16,28�31

However, the exact mechanism of charge separation is still
debated for purely organic solar cells and still in an early phase for
hybrid composites. For P3HT in combination with [6,6]phenyl-
C61-butyric acid methyl ester (PCBM), which has been demon-
strated to achieve power conversion efficiencies of around 5%,32

there are suggestions that Frenkel-type excitons are the primary
photoexcitations that dissociate into free charges.16,29,30 There
are indications that the charge separation takes place more
efficiently for blends of RR-P3HT:PCBM than for RRa-P3HT:
PCBM.16 In contrast, prompt polaron formation during laser
excitation was considered for neat P3HT and RRa-P3HT:
PCBM.30,33 For the polymer PCDTBT in combination with
PCBM, there are also contradicting interpretations in discussion.
On the one hand, it has been suggested that light absorption may
directly create mobile electrons and holes by interband π�π*
transitions which would subsequently evolve into Coulombically
bound excitons in less than 1 ps.31 Similarly, for a composite of a
PPV derivative with PCBM, the primary photoexcitation has been
suggested to be an ultrafast electron transfer on the time scale of
45 fs.28 On the other hand, ultrafast exciton dissociation to form free
charges was also considered very recently for PCDTBT:PCBM
blends.34 For hybrid donor�acceptor materials, detailed ultrafast
spectroscopic investigations are still in an early phase. The question,
whether light absorption initially creates free charge carriers or
excitons, is central to the understanding of light harvesting in organic
and hybrid systems. A problem in resolving this issue pertains to the
experimental limits of time resolution and spectral range that are
accessible to optical probing. Here, we have developed a novel
ultrabroadband transient absorption spectroscopy setup with a time
resolution of 40 fs covering the entire broad spectral range from 415
to 1150 nmwithout interruption. This allows us tomonitor both the
kinetics of the decay of the primary excitation and its evolution into a
charge pair state in thin hybrid films.

In our studies, we focus on composites of P3HT in combina-
tion with silicon which is a particularly promising inorganic acceptor
for several reasons. It unifies an almost unlimited abundance with
environmentally friendliness, allowing for its widespread use. Silicon
additionally provides high electron affinity and allows for rapid
electron delocalization and screening after charge transfer which

may prevent back transfer and enables fast transport away from the
interface. Because of the higher dielectric constant of silicon
compared to PCBM, this effect should be even more pronounced
as in purely organic films, thus rendering silicon a very promising
alternative to PCBM for photovoltaic devices and fundamental
studies. Proof-of-principle investigations of charge transfer in hybrid
P3HT/Si systems were recently performed using electron spin
resonance (ESR).9 Prototype devices exhibited a relatively high
open-circuit voltage of 0.75 V,10 and power conversion efficiencies
of around 1% have been achieved.8 However, no detailed spectros-
copic understanding has been available so far. Because of its
current availability in crystalline, nanocrystalline, and amorphous
forms, silicon serves as a model system with fundamental implica-
tions for various other hybrid or organic material systems. In
particular, the exciton dissociation mechanism and therefore the
photophysics of charge generation and separation can be studied
more clearly in silicon-based devices. The reason for this is that
these processes are difficult to assess in the widely studied P3HT/
PCBM composite, since the various PCBM transient signals from
the visible to NIR35 superimpose with the transient absorption by
the polaron and exciton of P3HT.

In our study, we employ Si nanocrystals (Si-ncs) and poly-
crystalline silicon (poly-Si) as the electron acceptor in order to
study both film geometries of interest, bulk heterojunctions and
planar heterojunctions. For the development of efficient com-
mercial solar cells, the bulk heterojunction structure is favored,
since it offers a particularly large donor�acceptor interface. The
efficiency of planar heterojunctions is limited by the smaller
interfacial area, yet the two-dimensional interface area avoids re-
combination associated with interrupted percolation pathways
and cross-currents of electrons and holes. However, as our studies
primarily focus on the fundamental principles of the photophysics
(charge generation and separation), our devices are optimized for
an unambiguous data interpretation. To address the dependence
of charge carrier separation on polymer structural order, both
disordered RRa-P3HT and semicrystalline RR-P3HT were used.

Our pump�probe setup allows us to directly monitor in real
time the process of charge generation in hybrid thin film P3HT/
Si heterojunctions, here at room temperature in the absence of an
applied external field. For both RR- and RRa-P3HT, we observe
an instant creation of singlet excitons that subsequently dissoci-
ate to form polarons on an ultrafast time scale. We observe that
the yield of polaron formation through exciton dissociation is
significantly enhanced by adding Si as electron acceptor. Further-
more, we find that the yield of polaron formation and the degree
of Coulombic binding of the corresponding polaron pairs formed
in P3HT/Si depend on the polymer structural order, with
efficient free charge carrier generation in RR-P3HT/Si and
geminately bound charge carriers formed in RRa-P3HT/Si.

2. SAMPLE PREPARATION AND SUMMARY OF EX-
PERIMENTAL METHODS

2.1. Sample Preparation. In this work, three different types of
poly(3-hexylthiophene) with varying degree of aggregation were used.
For fundamental studies of interactions between disordered and ordered
regions of P3HT, films of a RR-P3HT (BASF SE, Sepiolid P 100,
regioregularity ∼95%, Mw = 50 000 g/mol, Mw/Mn = 2.2) were
prepared by spin-coating from chloroform (CHCl3) solutions with a
concentration of 7.5 mg/mL onto precleaned glass substrates. The same
polymer was dissolved in spectroscopically pure chloroform, toluene,
and 1,2-dichlorobenzene with concentrations of 0.075 mg/mL and filled
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in 1mm fused silica cuvettes for the transient absorption spectroscopy of
P3HT in solution.

P3HT/Si thin film heterojunctions with varied morphology were
prepared as planar heterojunctions (PHJs, Figure 1a) and bulk hetero-
junctions (BHJs, Figure 1b). For the PHJs with varied polymer structural
order, RRa-P3HT (University of Bayreuth, Germany, Mw = 40 000
g/mol,Mw/Mn = 2.4) dissolved in chloroform (5mg/mL), and RR-P3HT
(Rieke Metals, Mw = 39 000 g/mol, Mw/Mn = 2.0) dissolved in 98%
chloroform and 2% ethyl acetate (EtAc) (5 mg/mL) was used. The
former was synthesized by treating thiophene with FeCl3.

36 For the
latter, ethyl acetate as nonideal solvent for P3HT was admixed to
enhance the aggregation of the RR-P3HT molecules,37�39 which is
therefore referred to as aggRR-P3HT. All sample preparations were
performed under argon atmosphere.

Silicon nanocrystals (Si-ncs) were synthesized in a low-pressure
microwave plasma reactor by decomposition of silane.40 The pres-
sure of the process gases and the microwave power determine the
mean diameter of the Si-ncs. Phosphorus doping of the Si-ncs was
achieved by adding phosphine during growth and increases the
carrier mobility in the Si-ncs. The nominal doping concentration is
defined by the phosphine flow and the flow of the total precursor gas.
The Si-ncs used in this work have a mean diameter of 4 and 18 nm and
nominal doping concentrations of 5 � 1020 and 6.5 � 1019 cm�3,
respectively. The standard deviation of the particle diameter is
typically σ ≈ 1.4 nm.

Blend films of RR-P3HT and Si-ncs with a weight ratio of 5:1 were
spin-coated under nitrogen atmosphere from solutions in chloroform
(concentration 7.5mg/mL) to formRR-P3HT:Si-ncs BHJs (Figure 1b).
For the intended application as a solar cell, 15 mm� 15 mm� 1.1 mm
aluminoborosilicate with an approximately 110 nm thick conductive
indium tin oxide layer (ITO, Delta Technologies, Rs = 5�15 Ω)
was used as a substrate. Before spin-coating, the substrates were
cleaned by subsequent ultrasonic treatment in acetone and isopropanol
for 10min each. A typical sample layer thickness of 100 nmwas achieved.
The thin film samples were sealed against air by using fused silica
coverslips (150 μm thin) and silicone sealant.

The refractive index of the Si-ncs was previously measured to be
about 2.0 with only a slight monotonic decrease with wavelength. The
refractive index of the blend films can be expected to be close to the one
of a neat P3HT film, which has a reported index of around 1.7�2.0.41

Consequently no significant change of the Fresnel losses upon mixing of
the two materials is expected and the weak excitation should also not
lead to a transient change.

Polycrystalline silicon (poly-Si) films were prepared by silver-induced
layer exchange (AgILE).42 For a resulting poly-Si film thickness of
30 nm, an amorphous silicon precursor layer (50 nm) was grown on top
of a 30 nm silver layer on a fused silica substrate. The crystallizationwas per-
formed at 800 �C for 10 h under nitrogen atmosphere. Afterwards, the

silver was etched away with a 1:1 mixture of hydrogen peroxide and
ammonia solution at 100 �C.We prepared PHJs of 40 nmRRa-P3HT or
aggRR-P3HT and 30 nm poly-Si (aggRR-P3HT/poly-Si PHJ and RRa-
P3HT/poly-Si PHJ, Figure 1b) under nitrogen atmosphere. To be able
to perform TA spectroscopy of the individual materials and of the
heterojunctions, the poly-Si covers only a part of the substrate
(Figure 1a). Furthermore, we removed a stripe of the P3HT on the Si
side using a cotton tip with chloroform. A summary of the sample
structures used is given in Table 1.
2.2. Summary of Experimental Methods. Details about the

basic optical and morphologic characterization of the thin film samples
and the novel ultrafast transient absorption spectrometer are given in the
Supporting Information. To investigate the nature of the photoexcitations
and their inherent kinetics after visible excitation, we used an ultrafast
1 kHz pump�probe setup with a probe range of 290�740 nm.43 The
visible excitation with 15 fs pulses in the range from 450 to 720 nm is
accomplished by a noncollinear optical parametric amplifier (NOPA).44,45

We expand the probe range to 415�1150 nm by the combination of two
supercontinuum generation stages and a NIR-OPA operated at 1180 nm,
allowing for broadband UV�Vis-NIR TA spectroscopy with 40 fs time
resolution (Figure S3). This OPA was seeded with a supercontinuum
from a YAG crystal46 and generated the Vis�NIR probe continuum in a
CaF2 crystal. The pump and probe were focused towards the sample to a
210 and 110 μm 1/e2 beam diameter that allows ensemble averaging over
the finely grained morphology of the thin films to mimic their usage as
photovoltaic device and to ensure low local excitation densities.

3. RESULTS AND DISCUSSION

3.1. Structural Implications of Regioregularity and Sol-
vent. In our study, we aim to understand the process of charge
carrier generation in the polymer P3HT and in the hybrid system
formed by P3HT in combination with silicon. P3HT is a
semicrystalline polymer whose degree of aggregation depends
on the degree of regioregularity of the chain as well as on the
solvent used. In order to assess the role of aggregated P3HT
chains in the charge generation process, we employed samples
with different degrees of regioregularity and spun from different
solvents, as summarized in Table 1. The resulting structure of the
films was carefully monitored via atomic force microscopy
(AFM). The corresponding topographical images in 2D and
3D plots are shown in Figures 2a�c and Figure S1 and reveal a
varied aggregation: While RRa-P3HT exhibits a rather long
spatial coherence length (Figure 2a, Figure S1a), aggRR-P3HT
possesses a fine structure (Figure 2c, Figure S1b). RR-P3HT is
between these two extremes (Figure 2b).
The differences can be understood by regarding the different

processing conditions. In the case of aggRR-P3HT, we have used
chloroform as the main solvent, which exhibits a lower (61 �C)

Figure 1. Sample architecture of hybrid P3HT/Si thin film: (a) planar
heterojunction and (b) bulk heterojunction on glass substrates.

Table 1. List of Samples Used in This Work along with Their
Abbreviations

sample abbreviation

RR-P3HT (BASF), spun from CHCl3 RR-P3HT

RRa-P3HT (Bayreuth), spun from CHCl3 RRa-P3HT

RR-P3HT (Rieke), spun from CHCl3/EtAc aggRR-P3HT

silicon nanocrystals Si-ncs

polycrystalline silicon poly-Si

RR-P3HT:Si-ncs bulk heterojunction RR-P3HT:Si-ncs BHJ

RRa-P3HT/poly-Si planar heterojunction RRa-P3HT/poly-Si PHJ

aggRR-P3HT/poly-Si planar heterojunction aggRR-P3HT/poly-Si PHJ
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boiling point as the nonideal solvent ethyl acetate (77 �C). The
already partially aggregated polymer falls out of solution before
the main solvent is fully dissipated and before the film has fully
dried, leading to enhanced aggregation evident in the fine
structure of the AFM data. Comparison of Figure 2c and
Figure 2d further reveals that when spin-coating aggRR-P3HT
directly on poly-Si instead of glass, the fine structure indicating
the aggregation is maintained.
3.2. Optical Characterization. The amount of aggregation

present in a P3HT sample manifests itself not only in the AFM

characteristics but also in the optical spectra. Figure 3 shows the
absorbance (OD) and photoluminescence (PL) spectra of RR-
P3HT in the dilute chloroform solution and for thin film samples
used in this work. In dilute solution with a good solvent such as
chloroform, RR-P3HT is known to adopt a random coil con-
formation with a distribution of short conjugation lengths. This
results in a structureless absorbance that has its maximum at
446 nm and in a red-shiftedmore structured PL with peaks at 627
and 688 nm (Figure 3a). The PL originates from the longest
polymer segments after relaxation of the initial photoexcita-
tion. In film, the RR-P3HT chains can planarize to form weakly
interacting H-aggregates that are embedded in a matrix of
amorphous coiled P3HT chains. The resulting absorption thus
consists of a superposition of absorption by coiled chains and
absorption by planar, highly conjugated and aggregated chains.21

Consequently, the absorption is shifted to longer wavelengths, is
broadened, and shows vibronic peaks at 518, 558, and 608 nm
(Figure 3b) due to the 0�2, 0�1, and 0�0 transitions, respec-
tively, in agreement with literature data.21 The corresponding PL
also contains vibronic structure with peaks at 650, 712, and 800 nm
(mainly the CdC symmetric stretching mode, 1452 cm�1).
By considering the intensity of absorption between 400 and

500 nm and by considering the vibrational structure around
600 nm through amodified Franck-Condon analysis as described
in refs 21 and 47, it is possible to derive the amount of aggregates
present in a film (Figure S2). Figure 4a shows the absorption
spectra of the two limiting cases given in our study, that is,
RRa-P3HT and aggRR-P3HT. The absorption of poly-Si is also
shown for comparison. Analyzing the P3HT absorption in this
fashion, with the assumption that the absorption coefficient
of aggregated chains is 1.39 times that of coiled chains,47 yields
a percentage of (38 ( 5)% aggregates for the aggRR-P3HT
sample and of (24 ( 5)% aggregates for the RRa-P3HT sample
(Figure S2). RRa-P3HT possesses less aggregation and a reduced
conjugation length compared to RR-P3HT, which was attributed
to the adverse steric repulsive interactions between the hexyl side
chains and the sulfur.17,48 Figures 3b and 4b illustrate that when

Figure 2. Topographical AFM images of spin-coated films of (a) RRa-
P3HT (rms roughness Rq = 2.2 nm), (b) RR-P3HT (Rq = 1.2 nm), (c)
aggRR-P3HT (Rq = 5.4 nm) directly on glass substrate as well as (d)
aggRR-P3HT on top of a 30 nm thin polycrystalline Si layer (Rq =
6.3 nm). For (c) and (d), 2% ethyl acetate was mixed with the chloroform
solution to enhance the aggregation of the RR-P3HT molecules.

Figure 3. Absorbance and photoluminescence spectra of P3HT in (a)
dilute chloroform solution and (b) of RR-P3HT film. The absorbances
of Si-ncs and RR-P3HT:Si-ncs (5:1) BHJ as film are also shown. (c)
Absorbance spectra of RR-P3HT (blue dashes), oxidized RR-P3HT film
after adding FeCl3 (solid gray curve) and P3HT film polaron absorption
(brown dots and brown solid curve).

Figure 4. (a) Absorbance spectra of neat RRa-P3HT, RR-P3HT + ethyl
acetate (aggRR-P3HT), and neat poly-Si and (b) the corresponding
P3HT/poly-Si PHJs samples compared with the solar spectrum.
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the P3HT is intermixed with Si-ncs or spun on top of poly-Si,
the absorption spectrum is given by a superposition of the
individual components. Thus, in agreement with the AFM
data, spinning a film on top of a silicon substrate does not seem
to affect the amount of aggregates formed. Figure 4b further
demonstrates the good match of the heterojunction absorp-
tion against the solar irradiation spectrum that is essential for
efficient solar cells.
In order to study the process of charge generation in these

material systems, we do not only need to know how many aggre-
gated or coiled chains are present in the P3HT but also require a
spectroscopic signature for charges in P3HT films. P3HT thin
films can be chemically oxidized employing a strong oxidant.25,49

Figure 3c shows the absorbance spectrum of thus oxidized RR-
P3HT thin films after dipping into 20 ppm solution of iron(III)
chloride (FeCl3) in acetonitrile (CH3CN) for 1 min followed by
rinsing with acetonitrile to remove excess oxidant. From the raw
spectrum of the treated film we obtain the P3HT polaron
(P3HT+) absorption as follows. The treatment with FeCl3
decreases the known absorbance of the neutral P3HT molecule
(blue dashes) and increases absorbance in the range from about
560 to 1150 nm (brown dots). Partial saturation occurs at
treatment longer than 2 min. The difference between the blue
dashed line scaled to the peak of the gray solid curve in Figure 3c and
the gray solid curve reveals the RR-P3HT film polaron absorption
(brown dots and brown solid line). It ranges from about 560 to
1150 nm with a characteristic shape and increases again up to the
mid-infrared spectral region. The same oxidation was performed for
RRa- and aggRR-P3HT, and the results are shown in Figure 5.
Comparable but, because of reduced conjugation length, slightly
shifted results of the cation absorption are obtained for P3HT in
solution where chemical oxidation was introduced via adding
pentachloroantimonate (Figure S6, see details in Supporting In-
formation). Similar oxidation experiments as the ones presented
here have been reported and yielded very similar spectra.25,49,50

The polaron absorption spectrum, that we obtain in the P3HT
films (Figure 3c), closely matches the subgap polaron absorption
bands obtained by CW photoinduced absorption (PA) measure-
ments as reported in recent publications.7,11,25,51,52 Therefore,
we use our measured polaron absorption spectra for the indivi-
dual P3HT types for comparison with the transient absorption
spectra throughout the whole work.
3.3. Primary Photoexcitations. The thoroughly character-

ized samples and the systematic variation of their composition
allow the study of the excitations formed after illumination. To
directly probe the nature of the primary photoexcitations and the
inherent photovoltaic conversion processes in hybrid P3HT/Si
layers, we performed ultrafast pump�probe (transient absorp-
tion, TA) spectroscopy. The thin film samples were designed to
enable direct comparison between neat P3HT, neat Si, and the
P3HT/Si heterojunction in ultrafast TA spectroscopy at the same
experimental conditions by moving the relevant sample regions
into the pump�probe region. We chose pump and probe beam
diameters at the sample that allow for ensemble averaging over the
finely grained morphology of the thin films to mimic their usage
as photovoltaic device and to ensure low excitation fluence
(9 μJ/cm2 at 518 nm) comparable to the solar exposure. The low
excitation fluence was also chosen to prevent modulation of the
transient signatures due to a thermally induced spectral blue shift,
which might occur at high excitation fluences.53

Figure 5 shows typical Vis�NIR TA spectra for aggP3HT/
poly-Si PHJ, RRa-P3HT/poly-Si PHJ, and RR-P3HT:Si-ncs BHJ

(red solid curves) compared with the TA spectra of the corre-
sponding neat polymer film (black solid curves). Spectra were
recorded for the full range from 10 ps prior to the pump pulse up
to 2 ns after the pump pulse (see Figure S11). Spectra taken at
300 fs, 20 ps, and 1-2 ns pump�probe delay are shown. The
spectra are composed of negative ΔOD signals in the spectral
region of the P3HT film absorption between 415 and 630 nm
because of ground state bleach (GSB) and positive signals at
longer wavelengths due to photoinduced absorption (PIA), i.e.
excitons and polarons.
In order to directly compare the transient spectra and the

kinetics of the charged species of the various neat P3HT with
the corresponding P3HT/Si heterojunctions, the same number
of initial photoexcitations needs to be considered. Small devia-
tions in this number of initial photoexcitations occur in the
experiment due to small variations in film quality, film thick-
ness, and thus absorption or due to small changes in pump
beam size and pump energy between the various samples. The
integral over the GSB area equals the product of the excitation
density times the strength of the first electronic transition of P3HT
regardless of small variations of Franck-Condon activity due to
differing morphologies of P3HT in the various samples.54 The
integral therefore represents a good relative measure of the
number of initial photoexcitations. We use the transient spectrum
of the aggRR-P3HT film as reference. The TA spectra of the other
polymers and PHJs are each scaled by a small factor (0.7�1.3) for
the whole data set of 250 time steps and 512 wavelengths. As a
result, all spectra yield the same GSB area integral at the earliest
usable time delay. We found that any delay time between 0 and 80
fs gives the same result. This procedure allows for considering the
same number of initial photoexcitations in the films. Any changes
in the optical density (ΔOD in %) that would be seen under
reference conditions are then solely inherent to the different
nature of the sample.
For each measurement, the pairwise difference between TA

spectra of the heterojunction and the neat polymer is calculated
(green solid curves). For comparison, the particular P3HT film
polaron absorption spectrum (blue dashes) is included. The GSB
of aggRR-P3HT and RR-P3HT clearly reveals the characteristic
vibronic structure of the P3HT aggregate, in particular at 1-2 ns
after excitation, which does not show a spectral shift during the
delay times covered in the TA measurements. In Figure 5, we
further observe the relative signal ratio between the 0�0 and
0�1 GSB peak to change over time and, most importantly, the
GSB at 500 nm to reduce with time. As detailed further below in
section 3.6.1 and in the Supporting Information, this is a
signature that energy transfer takes place from coiled chains to
aggregated chains.
Since the GSB is due to those P3HT chains which are not in

the electronic ground state, it directly monitors the total
number of photoexcitations such as excitons or polarons still
present at a given delay time. The broadband PIA signals with
positive ΔOD (compare Figure 5) are adjacent to the GSB and
exceed the NIR detection range. We compare the PIA for the
hybrid heterojunctions (red solid curves) to the corresponding
neat polymer (black solid curves) and the difference spectra for
each pair with the chemically obtained P3HT film polaron
absorption spectrum. We find that the difference spectra match
the P3HT film polaron absorption spectra in the range of about
620�850 nm. The comparison also reveals a region of en-
hanced PIA through adding Si to P3HT. From this we conclude
that combining P3HT with silicon results in the generation of
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additional P3HT cations, i.e. polarons. In the neat P3HT film,
this polaron absorption also seems to be present, albeit at a
significantly reduced level. From a comparison of the signal
magnitude at 660 nm in the neat P3HT film and in the hybrid
heterojunction we infer that the polaron yield in the P3HT/Si
heterojunctions is more than a factor of 2 higher. Clearly, there
must be ultrafast electron transfer from P3HT to Si in PHJ and
BHJ morphologies. Consequently, Si is a promising electron
acceptor for hybrid photovoltaic devices, in accordance with
results by LESR.9

We now focus on the PIA spectra in the range of 900�1100 nm.
In this range, the difference spectrum, given by the green solid curve
in Figure 5, does not match the polaron absorption spectrum
(blue dots). In agreement with previous investigations,16,25,29,30

we assign the photoinduced absorption in this spectral range to
absorption by singlet excitons. To support this assignment, we
performed TA measurements of RR-P3HT in various dilute
solutions, where the intermolecular distance is high. We found
that under these conditions, P3HT cation formation does not
take place (Figure S7, see details in Supporting Information).

Figure 5. Transient absorption of (a) aggRR-P3HT/poly-Si PHJ, (b) RRa-P3HT/poly-Si PHJ and (c) RR-P3HT:Si-ncs BHJ for 300 fs, 20 ps and
1�2 ns pump�probe delay. The spectra are scaled to the same number of initial photoexcitations. The P3HT polaron absorption (blue dashes)
and the difference (green solid curve) between neat P3HT (black solid curve) and P3HT/Si (red solid curve) are compared. Excitation: 518 nm,
9 μJ/cm2.
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The singlet exciton leads to stimulated emission and undergoes
intersystem crossing on the nanosecond time scale to a triplet
state with a characteristic transition at 1.49 eV (830 nm). The
energetic position of the P3HT triplet transition confirms and
adds to recent experimental and theoretical investigations.16,55 In
addition to confirming the assignment of the singlet and triplet
excitons, this measurement also implies that excitation dissocia-
tion does not occur efficiently on a single polymer chain.
Moreover, the difference spectrum between the hybrid system

and the neat P3HT in Figure 5 shows a reduced PIA in the range
of 900�1150 nm, which suggests that adding silicon to P3HT
rapidly reduces the number of singlet excitons. The time evolu-
tion of the TA signals will be analyzed in detail further below. No
transient signatures of stimulated emission (SE) or a triplet state
are detected in any of the film measurements. This observation
and the concomitant increase of polaron absorption and reduc-
tion of exciton absorption when P3HT is combined with silicon
suggest the dissociation of singlet excitons as a path for polaron
formation. We therefore conclude that the enhancement of
polaron yield in P3HT by adding Si is due to an ultrafast electron
transfer from P3HT (electron donor) to Si (electron acceptor)
for all morphologies, namely PHJ and BHJ. We note that
no transient signatures could be detected for the neat Si films
or for excitation of the P3HT/Si heterojunctions with a pump
wavelength of 720 nm, which is outside the P3HT absorption
(Figures 3b and 4a). This shows that the observed effect of
enhanced polaron absorption and reduced exciton absorption is
due to electron transfer from excited P3HT to Si and not due to
optical effects such as a transient change of index of refraction in Si.
So far we have assigned the various features of the TA spectra

to photoexcitations, and the general observations pertained to all
sample structures. We now consider the quantitative differences
that arise between the various samples. In agreement with
previous work,16,29,33 we find some polaron formation to occur
also for the neat P3HT films. Taking the signal magnitude around
660 nm as a measure for the amount of polaron formation, we find
the initial yield to decrease in the order aggRR-P3HT, RR-P3HT,

and RRa-P3HT. This is also the order in which the amount of
aggregated chains in the film decreases (Figure 2). Therefore, the
obtained clear discrimination between the TA spectra of the three
types of P3HTmatches the distinct differences in the correspond-
ing optical and structural properties. We thus associate a higher
polaron yield with an enhanced degree of aggregation and extended
conjugation, enabling highly delocalized excitations and charge
carriers with high mobility.24,25

This effect of the P3HT structural order on the polaron yield is
alsomanifested in the hybrid heterojunctions. Comparison of the
polaron absorption signal (at 660 nm; see red curve in Figure 5)
indicates about a factor of 2 more efficient initial polaron
formation for aggRR-P3HT/poly-Si PHJ compared to RRa-
P3HT/poly-Si PHJ. We attribute this finding to the higher
degree of conjugation, pronounced exciton delocalization, and
an increased mobility of charge carriers which enable a more
efficient charge transfer. A possibly more favorable free energy of
charge generation through improved band alignment for ordered
P3HT chains remains to be investigated.56 Recent results state a
rise only of theHOMOenergy level and no change of the LUMO
level through chain ordering.57 For a possible photovoltaic
application, we compared RR-P3HT:Si-ncs BHJs with aggRR-
P3HT/poly-Si PHJs. The polaron yield is higher and their
lifetime is slightly longer in aggRR-P3HT/poly-Si PHJ than in
RR-P3HT:Si-ncs BHJ as becomes evident through comparison
of the TA spectra in Figure 5a,c. The former can be attributed to
the intermediate P3HT type used in the BHJ. The latter is
assigned to Si dangling bond defects in Si-ncs which act as
recombination centers. To address this, we are currently working
on postgrowth treatments, e.g., HF etching, vacuum annealing,
and surface functionalization, which improve the surface and
defect properties.58 Moreover, interrupted percolation paths in
the current BHJ morphology can also lead to enhanced recom-
bination and limit the efficiency, as not the entire amount of
photoinduced charge carriers can move to the electrodes. To
overcome this, the fabrication of a defined BHJ morphology via
nanoimprinting is a promising approach.

Figure 6. (a) Experimental TA signals (open symbols) as function of the pump�probe delay with corresponding fits (solid curves) of GSB (green), singlet
exciton (red), and polaron (blue) for the aggRR-P3HT/poly-Si PHJ. The fit parameters are listed in Table 2. (b) PIA band single-channel fit amplitudes and
time constants for the 140 fs component (red triangles) and the 1 ps component (black dots). The dashed lines are the signals taken for (a). The band
assignment (inverted green curve) from Figure 5a agrees with the separation of polaron and exciton signatures via the fit amplitudes of the 140 fs component.
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In summary, our TA measurements point out that polymer
structural order plays a significant role in hybrid solar cells,
though Si can significantly enhance the initial polaron yield even
in the disordered RRa-P3HT (Figure 5b). Below, it will be
investigated whether bound polaron pairs or mobile charge
carriers are formed in the P3HT/Si heterojunctions.
3.4. Temporal Evolution of the ChargeGeneration Process.

Having identified the features of GSB (about 415�620 nm),
polaron absorption (about 620�900 nm), and singlet-exciton
absorption (900�1150 nm), we now consider their inherent
kinetics in a quantitative fashion. Figure 6a shows the evolution
of the TA signals for the GSB (at 550 nm), the polaron absorption
(at 660 nm), and the singlet exciton absorption (at 1000 nm) of
aggRR-P3HT/poly-Si PHJ on a time scale up to 2 ns with a time
resolution of 40 fs. FromFigure 6a, a few observations can bemade
immediately. First, the GSB and the singlet exciton absorption
reach their maximum signal with a rise time of 40 fs (see also the
inset), i.e., within the experimental resolution. This observation is
important, as it implies that the exciton is formed directly upon
photoexcitation. Second, the polaron absorption signal shows a
delayed rise. It reaches its maximum at about 300 fs. This rise of the
polaron signal is matched by a corresponding initial decay of the
singlet exciton absorption signal. This suggests that the singlet
exciton, formed by absorption, decays to form polarons. Third, the
ultrafast time evolution of the GSB and the singlet exciton
absorption signal is very similar. This can be readily understood
by an additional ultrafast nonradiative decay mechanism of at least
some of the excited P3HT molecules. A minimal rate model that
allows relaxation of the exciton into the polaron by dissociation
and to the P3HT ground state by nonradiative decay directly
renders the result that the yield of each channel is given by the ratio
of the individual rate to the sum of both.59 The spectroscopic
signal is additionally weighted by the respective extinction coeffi-
cients. The exciton serves as a reservoir, and the same femtosecond
kinetics is observed for the decay of the exciton signal and the
recovery of the GSB.59 Nonradiative electronic decay on the
femtosecond time scale is now widely reported for a large variety
of molecular systems60�64 and believed to be frequently mediated
by conical intersections.65,66 Whether a conical intersection is also
responsible for the observed ultrafast nonradiative decay in P3HT
films has to be clarified in the future. It has recently been
established in conjugated polymers that exciton localization occurs
in tens of femtoseconds and leads to nonemissive states.67,68

Single-molecule spectroscopy has correlated the ultrafast relaxa-
tion to aggregated regions of the polymer.69

To further substantiate the conclusion that the polarons are
formed from the excitons, we have fitted the decay of the transient
data. Already a visual interpretation of the kinetic traces shows that
there is the ultrafast signal change as discussed above and an
additional slower component. It is possible to model the decay of
the GSB and the singlet exciton absorption as a stretched expo-
nential (SE) curve. A stretched exponential decay is expected for
films that possess an ensemble of ordered and disordered regions
and a correspondingly broaddistribution of decay times.70,71 Aswe
are particularly interested in the initial signal changes, we treat the
ultrafast component separately by fitting the GSB and the singlet
exciton absorption according to the function

ΔOD ¼ A1 expð � t=τ1Þ þ ASE expð � t=τSEÞβ þ const ð1Þ
We also use eq 1 to fit the polaron absorption signal. The

polaron decay will also be characterized by a distribution of

relaxation times, because of various on-chain and interchain
recombination paths. Therefore, the use of a stretched exponen-
tial fit for the decay kinetics is justified.71 The fit curves obtained
are indicated as solid colored curves in Figure 6a. The fit
parameters A1, ASE, τ1, τSE are listed in Table 2 for the ΔOD
signals at 660 nm (polaron), 1000 nm (exciton), and 550 nm
(GSB). The exponent βwas found to be 0.5 in all cases. Figure 6b
illustrates how these fit parameters vary as a function of probe
wavelength across the entire detected spectral range.
We find that the singlet exciton absorption and the GSB both

decay with a similar first ultrafast time constant of 140 fs,
followed by a slower decay, for which the combination of
τSE≈ 0.6 ps and β = 0.5 yields an average decay time Æτæ of about
1.2 ps. We find the same time constant of 140 fs for the delayed
buildup of the polaron signal, followed by a decay characterized
by an average decay time Æτæ of about 0.8 ps. The fact that the rise
of the polaron population is correlated with a simultaneous decay
of the exciton population is strong evidence that the polarons are
created through the dissociation of singlet excitons.72

From the overview of the fit parameters in Figure 6b, we see
that the time constants found in our fits stay rather constant over
the entire spectral range of the individual transient species.
Moreover, the fastest time constant τ1 is present over the entire
probe spectral range. This implies that the chosen model
describes the intrinsic dynamics properly. The variations of the
τSE decay time between the transient species can be attributed to
different recombination processes for polarons and excitons as
well as energy transfer processes between coils and aggregates
suggested above and demonstrated in more detail below. The
amplitudes for the ultrafast 140 fs component (A1) and the
slower component (ASE) have the same sign in the spectral
region describing the singlet exciton absorption, that is, from 900
to 1150 nm and beyond. For shorter probe wavelengths, when
the polaron absorption is probed, the amplitude A1 for the 140 fs
component changes sign, as it no longer describes an absorption
decay but rather the delayed rise of the polaron absorption. This
evident correlation between singlet exciton decay and polaron
rise further strengthens our interpretation. Similar kinetics are
observed for neat P3HT, RRa-P3HT/poly-Si PHJ, and RR-
P3HT:Si-ncs BHJ, independent of pump polarization orienta-
tion. At 6 ns, the GSB shows 5% of its initial signal magnitude that
we assign to long-lived photoexcitations, which can readily be
harvested in a solar cell. At this point we want to emphasize that
the samples were optimized for ultrafast TA measurements and
not for optimum solar cell performance, where reduced recom-
bination can be achieved via various methods as detailed in the
introduction and the conclusion sections.
For an absorbed number of photons of 2.6� 109 per pulse at an

excitation of 9 μJ/cm2 at 518 nm, we obtain an excited state
areal density of 2.4� 1013 cm�2 (Table 3, see details in Support-
ing Information). The polaron cross section of (3.4 ( 2) �
10�16 cm2, the polaron molar extinction coefficient of

Table 2. Fit Parameters: Amplitudes and Time Constants for
the Transient Species in Figure 6

parameter polaron (660 nm) exciton (1000 nm) GSB (550 nm)

A1 �14.6 � 10�3 2.6 � 10�3 �1.6 � 10�3

τ1 (ps) 0.14 0.14 0.14

ASE 20.2 � 10�3 7.1 � 10�3 �13.6 � 10�3

τSE (ps) 0.41 0.63 0.6
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(4 ( 1) � 104 L mol�1 cm�1, and the initial charge density
of 6� 1018 cm�3 obtained from our measurement series are
similar to previous investigations of RR-P3HT:PCBM BHJ
at comparable excitation fluence.16,30,73

With the interpretation that photoexcitation generates exci-
tons that subsequently decay into polarons, it is possible to
estimate the maximum yield of polarons formed initially by
considering the relative magnitudes of the TA signals at 300 fs
given in Figure 5. Details of the calculations can be found in the
Supporting Information. While we estimate a maximum quan-
tum yield of 17% for the formation of the P3HT+ polaron in a
neat film of aggRR-P3HT, this value raises to 38% in the planar
heterojunction (aggRR-P3HT/poly-Si PHJ) in combination
with a maximum Si� yield of 25% (Table 4). We note that in
the heterojunction device, the P3HT layer covering the silicon
has a film thickness of only 40 nm so that excitons are created
close to the donor�acceptor interface. The significant enhance-
ment of exciton dissociation in the presence of silicon implies
that silicon performs very well as an electron accepting material.
The charge yield points to efficient electron transfer and a spatial
exciton delocalization in ordered P3HT of about 10 nm, in
agreement with previous investigations.74,75

The obtained polaron yields are similar to RR-P3HT:PCBM
studied previously,29 which raises the hope for aggRR-P3HT/Si
heterojunctions to achieve comparable power conversion effi-
ciencies as existing and even commercially available thin film
solar cells based on RR-P3HT:PCBM BHJs.32

3.5. Charge Recombination Processes. So far we have
substantiated the discussion of the yield and the time scale of
the exciton dissociation into polarons. Now we address the issue
of whether the positive and negative polarons formed are still
Coulomb-bound as a geminate pair or whether they are free
charge carriers. This question is crucial for the efficient operation
of photovoltaic devices. There is no obvious reason why the TA
spectra of bound polarons should be very different from those of
free polarons. We are therefore not able to distinguish between
bound and free polarons on the basis of the TA spectra. However,
it is possible to distinguish the two species by considering their
recombination kinetics. We expect a pair of geminately bound
positive and negative polarons to recombine (radiatively or
nonradiatively) with each other, i.e., monomolecularly. Their
decay should therefore not be affected by the overall number
density of bound polaron pairs that are formed upon photo-
excitation. Further, the number density of bound polaron pairs

formed should not impact on the singlet exciton population, thus
leaving the decay kinetics of the singlet exciton absorption or the
GSB unaltered. In contrast, if exciton dissociation results in the
generation of free, i.e., nongeminate, positive and negative polar-
ons, then these charges can only recombine when they meet each
other, i.e., by bimolecular charge�charge annihilation. The prob-
ability ofmeeting the oppositely charged polaron thereby increases
with the number density of polarons formed.16,73 Further, singlet
excitons can recombine through quenching by free polarons, and
the probability for this exciton-charge annihilation also increases
with the number density of free polarons.16,76,77 Thus, in summary,
for geminately bound polarons we expect the decay transients of
polaron absorption, singlet exciton absorption, and GSB to be
independent of excitation fluence, while we expect accelerated
decays with increasing excitation fluence for free polarons gener-
ated upon singlet exciton dissociation.
To study the role of delocalization and the nature of the

recombination processes in P3HT/Si heterojunctions, we record
Vis�NIR TA spectra up to 2 ns delay with increased excitation
fluences from 4 to 60 μJ/cm2. The absorption signals of the
corresponding relevant transient species in aggRR-P3HT/poly-
Si PHJ (Figure 7a), RRa-P3HT/poly-Si PHJ (Figure 7b), and
RR-P3HT:Si-ncs BHJ (Figure S8) are normalized against their
individual initial maximum. This allows the study of the recom-
bination rate as a function of excitation fluence. For the RRa-
P3HT/poly-Si PHJ sample we find the decay kinetics to be
independent of excitation fluence. Consequently, the polarons
formed in a PHJ of silicon with RRa-P3HT are predominantly
Coulomb-bound. In contrast, we find enhanced decay rates with
increasing excitation fluence for aggRR-P3HT/poly-Si PHJ,
suggesting the predominant formation of free polarons. The
same observation ismade for RR-P3HT:Si-ncs BHJs (Figure S8).
In Figure 7a the enhanced decay rate leads to an apparent shift of
the maximum of polaron absorption to earlier times, covering the
delayed polaron rise.
Consequently, in the aggRR-P3HT/poly-Si PHJ and the RR-

P3HT:Si-ncs BHJ photoinduced ultrafast generation of free
charges is obtained, which opens the route for efficient charge
extraction from the active layer in the hybrid devices. In fact, it
was recently shown that the competition between extraction and
bimolecular recombination of mobile charges determines the
dependence of the photocurrent on the applied bias and there-
fore the fill factor in RR-P3HT:PCBM BHJ devices.78,79

It is worthwhile to briefly reflect on these results. For the RRa-
P3HT/poly-Si PHJ, photoexcitation near the hybrid interface
results in excitons that are mostly localized on coiled chains. An
electron is then transferred to the poly-Si with a time constant of
140 fs, leaving behind a P3HT+ cation, i.e., a positive polaron. In
silicon, the electron can be expected to be well delocalized
because of the high dielectric screening. However, on the coiled
P3HT chain, the conjugation length is low and the energetic
disorder is high. As a result, the positive polaron is localized in the
sense that its coherence length and its mobility are low. It seems
that the presence of amore “pointlike” andmoreover “immobile”
positive charge on the P3HT prevents the formation of free
polarons. In a certain way, the situation is comparable to that of a
point charge in front of a metal that feels an attractive force. In
contrast for the aggRR-P3HT/poly-Si PHJ, a significant fraction
of the excitations are created on planar, aggregated chains that are
characterized by a high conjugation length and low energetic
disorder. After charge transfer, the delocalized electron in the
silicon is thus interacting with a positive polaron that not only is

Table 3. Parameters of the P3HT/Si Heterojunction with
9 μJ/cm2 Excitation at 518 nm

parameter

absorbed photons 2.6 � 109/pulse

areal density of excitations (cm�2) 2.4 � 1013

polaron cross section (cm2) (3.4 ( 2) � 10�16

initial charge density (cm�3) 6 � 1018

Table 4. Initial Quantum Yields of Charges in Neat P3HT
and aggRR-P3HT/poly-Si PHJ

Sample P3HT+ P3HT� P3HT + E Si�

aggP3HT 0.17 0.17 0.83 0

aggP3HT/Si 0.38 0.13 0.62 0.25
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comparatively delocalized but also has a high initial mobility due
to the low disorder. Such a polaron might move away from the
hybrid interface, for example, by spectral diffusion to slightly
longer conjugated segments, thereby overcoming the weak
Coulomb attraction to the delocalized electron in the silicon
and thus leading to the formation of a free pair of positive and
negative charge. This finding is also supported by anisotropy
measurements (Figure S10). It seems that a key issue in exciton
dissociation is the delocalization, the dielectric screening, and the
mobility of both the electron and the hole. Thus, a significant
implication of the polymer structural order for hybrid and
organic solar cells becomes evident and can be understood on
a microscopic level.
Our interpretation of the results is based on the concept of

singlet exciton dissociation into bound or free polaron pairs that
we support by Figures 5 and 6. From the excitation fluence of
4μJ/cm2, where bimolecular annihilation sets in, we derive amean
excitation spacing of more than 6 nm in aggRR-P3HT and RR-
P3HT, assuming an isotropic distribution of photoexcitations
within the pump�probe volume. This finding reveals that despite
the 6 nm (∼15 thiophene repeating units) separation between the
initial photoexcitations, the subsequent bimolecular interactions
due to the generated mobile polarons can still take place pointing
to high charge carrier mobility and rather spatially delocalized
excitations, in agreement with other TA measurements for con-
jugated polymers,29,74 and supporting the degree of delocalization
indicated from our quantum yield calculations mentioned above.
It was previously suggested that polarons in conjugated polymers

may also be generated from higher excitonic states accessed by
sequential excitation or by exciton�exciton annihilation.33,80�82

These delocalized “hot exciton” charge-transfer states are supposed
to exhibit a higher dissociation probability via enhanced electron�
hole separation and charge mobility.75,83,84 These additional pro-
cesses cannot, however, be the dominant polaron formation

pathway in the present work for several reasons. First, the polaron
formation happens with a 140 fs time, which is too fast for
bimolecular annihilation processes.16,77,82 Second, sequential excita-
tions during the pump pulse come into play only at very high
excitation fluences starting at 100�400 μJ/cm2.81,82 Third, the
polarons show the same intensity dependence as the excitons
(Figure S9) and are thus generated from singlet excitons.
3.6. Variation of Excitation Wavelength.
3.6.1. Energy Transfer. We have seen that the conformation of

the polymer chain has a major impact on the nature of the
photogenerated charges. The number of excitations created on
coiled chains or on aggregated chains is determined not only by
the choice of P3HT regioregularity and solvent but also by the
choice of excitation wavelength. Figure 8 shows ultrafast
UV�Vis TA spectra of neat RR-P3HT thin films at 60 fs, 300
fs, 13 ps, and 140 ps with excitation at 450 nm (blue solid curve)
and 600 nm (red solid curve). The spectra are normalized against
the GSB so that signal changes solely inherent to the variation of
the pump wavelength can be studied. The transient absorption
spectra contain signatures of GSB (425�625 nm) and of polaron
absorption (>625 nm). The inverted RR-P3HT film absorption
spectrum (OD, green solid curve) is scaled to the RR-P3HTGSB
peaks. The calculated difference spectra between the GSB and
the inverted thin film absorption are shown as dashed curves for
both excitation wavelengths (TA � OD, dashed). These differ-
ence spectra are then compared to the scaled absorption
spectrum of RR-P3HT in dilute chloroform solution (OD, cyan
solid line).
At 60 fs, the GSB of the RR-P3HT film is significantly broader

when excited at 450 nm than for excitation at 600 nm. Immediately
after excitation with 600 nm, the GSB of the film lacks the spectral
components equivalent to the absorption spectrum in dilute
chloroform solution. In dilute chloroform solution, polymers form
coils as the chains curl up. Thus, at 60 fs after excitation, only planar

Figure 7. (a) Decay of TA signals for increased excitation fluences (4, 10, 40, and 60 μJ/cm2 at 518 nm) reveals bimolecular nongeminate
recombination in the case of aggRR-P3HT/poly-Si PHJ. (b) Decay of TA signals for increased excitation fluences (5, 20, 40, and 60 μJ/cm2 at 518 nm)
reveals monomolecular geminate recombination in the case of RRa-P3HT/poly-Si PHJ.
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aggregated chains are excited by light with 600 nm, while both
coiled and aggregated chains are excited by light with 450 nm. This
distinct difference between the spectra obtained for excitationwith
450 nmandwith 600 nm stays visible up to 13 ps. At 13 ps, the film
GSB coincides for both pump wavelengths. The difference
between the GSB at 13 ps and the inverted film absorption
spectrum corresponds to the absorption spectrum of P3HT coils
except for some weak low energy tail around 480 nm.
At 140 ps after excitation, the GSB shows even clearer vibra-

tional structure and the difference between GSB and inverted film
absorption spectrum reveals spectral parts missing in the GSB
which are even beyond the coil absorption spectrum. This indicates
further slow energy migration within the aggregates toward more
planar and extended conjugated segments, e.g., via torsional relaxa-
tion or excitation energy transfer (EET).85,86 Thus, theGSB beyond
13 ps reveals the absorption spectrum due to RR-P3HT aggregates
only, which is taken from the 140 ps case for Figure 9. It can be seen
that aggregate absorption ranges from 460 to 625 nm.
For excitation at 600 nm, the GSB at 60 fs and the GSB at

140 ps are identical except for the changes in the 0�0 peak intensity
already discussed in the context of Figure 5. In contrast, for
excitation at 450 nm, the GSB loses the higher energy contribu-
tions that are attributed to coiled chains. We attribute this
behavior to an energy transfer from unordered (coils) to ordered
domains (aggregates, planar segments) in RR-P3HT films, as
also indicated in the TA measurements of the PHJs and the BHJ
above. Parts a and b of Figure 3 show that the PL of RR-P3HT in
dilute solution (coils) overlaps with the absorption spectrum of
RR-P3HT thin films, which is a prerequisite for efficient electronic
energy transfer.68,70 With excitation of the RR-P3HT film at

450 nm, both coils and aggregates are addressed; however, the
coils undergo downhill energy transfer to the aggregated
regions. An analysis of the ratio between the GSB intensity
at 480 nm for excitation at 450 and at 600 nm reveals a forward
1/e energy transfer time of about 3 ps (Figure S5, see more
details in the Supporting Information). It is interesting to note
that this is the same time constant as observed for the energy
transfer from glassy phase to a planarized phase in poly(9,9-
dioctylfluorene).37

3.6.2. Role of Excess Energy. Figure 8 allows us to distinguish
the absorption range of coils and aggregates. For excitation
wavelengths above 500 nm one predominantly addresses the
aggregated RR-P3HT regions. For excitation above 550 nm one
exclusively addresses the aggregated RR-P3HT regions. Further-
more, with excitation wavelengths below 500 nm one predomi-
nantly addresses the coiled RR-P3HT regions. We can therefore
selectively excite ordered or disordered regions of P3HT films.
Variation of the excitation wavelength thus provides an alter-
native approach to control whether coiled or aggregated chains
are initially excited. We use this to further corroborate our results
obtained on the morphology dependence of the polaron yield.
Figure 9 shows the initial polaron yield at about 300 fs as a
function of the excitation wavelength at the hybrid heterojunc-
tion with the intermediately aggregated RR-P3HT. For compar-
ison, the absorption spectra of coiled and of aggregated P3HT
chains (taken as the GSB at 140 ps from Figure 8) are also shown.
For this experiment, the pump pulse was adjusted to central

wavelengths of 450, 475, 518, 535, 555, and 600 nm and pulse
durations of about 15 fs with the same experimental pump�probe
conditions. For directly comparing the transient spectra of hybrid
RR-P3HT/Si heterojunctions excited at different wavelengths, the
transient spectra were scaled according to the individual initial
P3HT GSB (internal standard). In this case, comparing the initial
polaron absorption magnitudes of the various TA spectra can
reveal changes in polaron yield solely inherent to the different
excitation wavelengths while considering the same number of
initial photoexcitations in the P3HT/Si heterojunction.
Figure 9 reveals an enhancement of more than a factor of 2 of

initial polaron yield by increasing the excitation wavelength from
450 to 600 nm. The trend was obtained independently on the
device structure, i.e., for PHJ and BHJ geometries. The error bars
result from multiple measurements of several hybrid RR-P3HT/
Si samples under the nominally same experimental conditions.

Figure 8. UV�Vis TA spectra of RR-P3HT thin film at 60 fs, 300 fs,
13 ps, and 140 ps with excitation at 450 nm (solid blue curve) and at
600 nm (solid red curve). The inverted absorption spectrum of RR-
P3HT thin film (OD, green solid curve) is scaled to the RR-P3HT GSB
peaks to extract the differences (TA � OD, corresponding dashed
curves) between the transient spectra and the film absorption, which are
compared to the absorption spectrum of RR-P3HT in dilute chloroform
solution (OD, cyan solid curve).

Figure 9. Dependence of initial polaron yield (black squares) on
excitation wavelength for RR-P3HT/Si heterojunctions. Selective ex-
citation of coiled (blue curve) vs aggregated (red curve) RR-P3HT
domains reveals greater than a factor of 2 more efficient charge
separation if exciting directly the aggregated RR-P3HT domains.



18231 dx.doi.org/10.1021/ja207887q |J. Am. Chem. Soc. 2011, 133, 18220–18233

Journal of the American Chemical Society ARTICLE

The increase by a factor of 2 matches the enhancement of the
polaron yield which was observed in Figure 5a,b by comparing
highly aggregated aggRR-P3HT/poly-Si PHJ with RRa-P3HT/
poly-Si PHJ. In the latter case, P3HT coils were predominant.
Our findings are an extension of previous TA investigations
where the degree of aggregation was varied via thermal
annealing.19 In conclusion, we record the same factor of 2 more
efficient charge generation in aggregated polymer-based hybrid
heterojunctions compared to the unaggregated version by two
different and independent methods: (i) by using different P3HT
configurations and therefore solely changing the structural order
in the P3HT film (Figure 5) and (ii) by solely changing the
excitation wavelength and therefore selectively exciting defined
P3HT regions (Figure 9). If excess photon energy was necessary
for the exciton dissociation process, we would expect a high initial
polaron yield for excitation at 450 nm and a lower polaron yield
for 600 nm excitation. The fact that we observe exactly the
opposite tendency clarifies that excess photon energy is not
required; however, structural order is essential. Whether this
order enhances charge separation by increasing the initial charge
carrier mobility or by improving the overall energetics or by both
remains an intriguing question for further research.

4. CONCLUSIONS AND IMPLICATIONS FOR HYBRID
AND ORGANIC PHOTOVOLTAIC DEVICES

We have comprehensively studied the nature of primary photo-
excitations and their inherent dynamics in neat P3HT and in
hybrid P3HT/Si thin films by ultrabroadband (UV�Vis�NIR)
transient absorption (TA) spectroscopy with 40 fs time resolu-
tion and varied excitation wavelength. Hybrid heterojunctions
with 30 nm thin polycrystalline Si layers or Si nanocrystals were
processed with P3HT of varied polymer structural order and film
geometry. The spatial and optical properties of planar and bulk
heterojunctions show that Si does not change the P3HT
structure and leads to a broad film absorption range from the
UV to 1100 nm needed for efficient light-harvesting.

Scheme 1 summarizes the primary photoinduced processes in
hybrid P3HT/Si thin film heterojunctions. In the TA experi-
ments, we can identify the transient signatures of P3HT polarons
(620�900 nm) and singlet excitons (900�1150 nm). Our
measurements reveal singlet excitons in P3HT as primary
photoexcitation with a subsequent ultrafast electron transfer
from P3HT to Si as inherent photovoltaic conversion process
for all employed hybrid heterojunctions. The addition of Si to
RR-P3HT or RRa-P3HT significantly enhances the polaron yield
in the active layer

These experiments show that silicon is a particularly favorable
electron acceptor because of the highly efficient charge deloca-
lization. Moreover, the higher dielectric constant, compared to
the state-of-the-art electron acceptor PCBM, allows for an
improved screening of the electron, preventing back transfer.
Besides these advantages compared to organic semiconductors,
Si is abundantly available and offers the possibility of selective
surface modifications and thus interface engineering.

In neat P3HTand inP3HT/Si heterojunctions,we reveal adelayed
polaron formation compared to singlet excitons, which appear
within the experimental time resolution of 40 fs. The population
of polarons has a maximum at about 300 fs after excitation. Thus,
charge generation is probed in real time, revealing a 140 fs rise
time for polarons, which is found to correlate with the initial 140 fs
decay of the singlet excitons in P3HT. We conclude that the

correlated decay of the exciton population and the rise of the
polaron population indicate polaron formation via singlet
exciton dissociation. In particular we stress that there is no
significant polaron population immediately after excitation,
i.e., after 40 fs. The ultrafast charge transfer (CT) process
implies a strong exchange integral of the excited state orbitals
of electron donor and acceptor.

This result demonstrates that the observation of ultrafast
charge carrier generation is not in contradiction to the initial
formation and subsequent dissociation of a singlet exciton, in
contrast to recent suggestions made for the mechanism of charge
carrier generation in the blend of the low band gap polymer
PCDTBT with PCBM.31 Their argument essentially pertains to
the fact that free charges can be observed as fast as 100 fs after
photoexcitation. Similar interpretations for a MDMO-PPV:
PCBM blend have been made earlier.28 This issue, whether light
absorption immediately creates free charge carriers or excitons, is
central to the understanding and optimization of photoconver-
sion in organic and hybrid solar cells. A problem in resolving
this issue pertains to the experimental limits of time resolu-
tion and spectral range that are available for optical probing.
Here we have developed a novel ultrabroadband gap-free TA
spectroscopy setup with a time resolution of 40 fs over the
entire spectral range from 415 to 1150 nm. This allows us to
monitor both the decay of the primary excitation and its evolution
into a charge pair state.

We have investigated the difference in the polaron formation
process for RRa-P3HT, where only a small part of the film is
composed of aggregates and for RR-P3HT containing an in-
creased fraction of aggregates. TA measurements with varied
excitation fluence clarify that in hybrid P3HT/Si heterojunctions
with aggregated P3HT exciton dissociation predominantly leads
to free charge carriers, which can in principle be extracted as
photocurrent. This is evident from the fact that in RR-P3HT/Si
planar as well as in bulk heterojunctions we observe an increasing
recombination rate of polarons with increasing excitation fluence,
indicating bimolecular nongeminate recombination of charges
outside the Coulombic capture radius. These recombination rates
indicate that besides the primary photoconversion processes,
the charge transport and extraction at the electrodes are crucial
issues toward more efficient hybrid photovoltaic devices.
Although we have already performed initial systematic studies
on the reduction of Si dangling bond defects in the Si-ncs,58

which act as recombination centers, the charge transport and
extraction need to be further addressed in future work. How-
ever, power conversion efficiencies of 1% have been shown
recently with the first P3HT:Si-ncs blends.8 Combined with an
optimized charge transport and extraction at the electrodes,
their efficiency is expected to increase.

In contrast, for RRa-P3HT/Si, where there is initially a higher
proportion of excitons on coiled P3HT chains, the decay rate is

Scheme 1. Primary Photoinduced Processes in Hybrid
P3HT/Si Thin Film Heterojunctions
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independent of the excitation fluence, suggesting monomolecular
geminate recombination of bound carriers, making it less suitable
for photovoltaics from the photophysical perspective. Geminate
recombination was recently also found for polymer�polymer
blends and seems to be one of the main obstacles to be overcome
for photovoltaic applications.77,87 We attribute this difference
between RRa- and RR-P3HT to a more localized hole in RRa-
P3HT leading to localized charge carriers in RRa-P3HT/Si as
opposed to highly delocalized charge carriers in RR-P3HT/Si
revealing that high polymer structural order is a necessity for free
charge generation in P3HT/Si.

Quantitatively, we can demonstrate that using aggregated
P3HT leads to a factor of 2 higher polaron yield compared to
employing disorderedP3HT in photovoltaics, by two different and
independent methods: (i) by using different P3HT configurations
and therefore solely changing the structural order in the P3HT film
and (ii) by solely changing the excitationwavelength and therefore
selectively exciting defined P3HT regions. Combined with results
from a modified Franck�Condon analysis, we find that the
polaron yield in P3HT/Si increases disproportionally with in-
creasing degree of aggregation in P3HT. Moreover, we find that
supplying excess energy does not assist the charge carrier separa-
tion, whereas our results indicate that ultrafast generation of free
charges is more dependent on polymer structural order. We argue
that the larger conjugation length, low energetic disorder, and the
concomitant higher initial charge carrier mobility in the planar
aggregated P3HT compared to the short conjugation length in
coiled P3HT favor the dissociation process into free charge
carriers. Additionally, we observed that downhill energy transfer
(ET) from coiled to aggregated chains takes place with a time
constant of 3 ps.

For this reason, purely organic and hybrid photovoltaic devices
using P3HT should employ highly aggregated P3HT. The
loss of high-energy polymer absorption can be compensated
by stacking heterojunctions in tandem or even multiple
solar cells using conjugated polymers with different band
gaps.88,89 Detailed investigations of the optimum Si-nc band
gap for charge transfer remains for future research. The
present ultrafast spectroscopic studies combined with on-
going P3HT/Si-ncs device optimization in terms of surface
and defect properties of the Si-ncs as well as of the film
morphology raise the hope to realize efficient P3HT/Si
photovoltaic devices.
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